instagram takipci instagram takipci satin al Antalya ev temizligi instagram takipci instagram takipci hilesi porno Lara Escort escort izmir kiz ankara escort Antalya escort


English Français

The recent discoveries of universal large-deviation properties of nonequilibrium fluctuations constitute major advances in statistical mechanics. These new results relate the counting statistics of currents or fluxes across open systems to nonequilibrium thermodynamics and are the consequences of microreversibility. These large-deviation relationships find their origin in the study of chaotic and fractal properties of dynamical systems sustaining transport processes such as diffusion.

Selected publications

Chaos, scattering and statistical mechanics,
P. Gaspard (Cambridge University Press, Cambridge UK, 1998).

Escape rate formalism:

Transport properties, Lyapunov exponents, and entropy per unit time,
P. Gaspard and G. Nicolis,
Phys. Rev. Lett. 65, 1693 (1990).

Fractality of diffusive modes:

Fractal dimensions of the hydrodynamic modes of diffusion,
P. Gaspard, I. Claus, T. Gilbert, and J. R. Dorfman,
Phys. Rev. Lett. 86, 1506 (2001).

Ab initio derivation of entropy production in diffusive systems:

Fractality of the nonequilibrium stationary states of open volume-preseving systems.
I. Tagged particle diffusion,
F. Barra, P. Gaspard and T. Gilbert,
Phys. Rev. E 80, 021126 (2009).

Entropy production of diffusion in spatially periodic deterministic systems,
J. R. Dorfman, P. Gaspard, and T. Gilbert,
Phys. Rev. E 66, 026110 (2002).

Fluctuation theorem for currents:

Fluctuation theorem for currents in open quantum systems,
D. Andrieux, P. Gaspard, T. Monnai, and S. Tasaki,
New J. Phys. 11, 043014 (2009).

Nonequilibrium fluctuations, fluctuation theorems, and counting statistics
in quantum systems
M. Esposito, U. Harbola, and S. Mukamel,
Rev. Mod. Phys. 81, 1665 (2009).

Nonequilibrium work relations:

Quantum work relations and response theory,
D. Andrieux and P. Gaspard, Phys. Rev. Lett. 100, 230404 (2008).

A unified approach to the derivation of work theorems for equilibrium and steady-state, classical and quantum Hamiltonian systems,
M. F. Gelin and D. S. Kosov, Phys. Rev. E 78, 011116 (2008).